Distinction among neuronal subtypes of voltage-activated sodium channels by mu-conotoxin PIIIA.

نویسندگان

  • P Safo
  • T Rosenbaum
  • A Shcherbatko
  • D Y Choi
  • E Han
  • J J Toledo-Aral
  • B M Olivera
  • P Brehm
  • G Mandel
چکیده

The functional properties of most sodium channels are too similar to permit identification of specific sodium channel types underlying macroscopic current. Such discrimination would be particularly advantageous in the nervous system in which different sodium channel family isoforms are coexpressed in the same cell. To test whether members of the mu-conotoxin family can discriminate among known neuronal sodium channel types, we examined six toxins for their ability to block different types of heterologously expressed sodium channels. PIIIA mu-conotoxin blocked rat brain type II/IIA (rBII/IIA) and skeletal muscle sodium current at concentrations that resulted in only slight inhibition of rat peripheral nerve (rPN1) sodium current. Recordings from variant lines of PC12 cells, which selectively express either rBII/IIA or rPN1 channel subtypes, verified that the differential block by PIIIA also applied to native sodium current. The sensitivity to block by PIIIA toxin was then used to discriminate between rBII/IIA and rPN1 sodium currents in NGF-treated PC12 cells in which both mRNAs are induced. During the first 24 hr of NGF-treatment, PN1 sodium channels accounted for over 90% of the sodium current. However, over the ensuing 48 hr period, a sharp rise in the proportion of rBII/IIA sodium current occurred, confirming the idea, based on previous mRNA measurements, that two distinct sodium channel types appear sequentially during neuronal differentiation of PC12 cells.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Solution Structure of μ-Conotoxin PIIIA, a Selective Inhibitor of Persistent TTX-Sensitive Sodium Channels

μ-Conotoxins are peptide inhibitors of voltage-sensitive sodium channels (VSSCs). Synthetic forms of PIIIA and PIIIA(2-22) were found to inhibit TTX-sensitive VSSC current but had little effect on TTXresistant VSSC current in peripheral ganglia. In rat brain neurons, these peptides preferentially inhibited the persistent over the transient VSSC current. Radioligand binding assays revealed that ...

متن کامل

mu-Conotoxin PIIIA, a new peptide for discriminating among tetrodotoxin-sensitive Na channel subtypes.

We report the characterization of a new sodium channel blocker, mu-conotoxin PIIIA(mu-PIIIA). The peptide has been synthesized chemically and its disulfide bridging pattern determined. The structure of the new peptide is: [sequence: see text] where Z = pyroglutamate and O = 4-trans-hydroxyproline. We demonstrate that Arginine-14 (Arg14) is a key residue; substitution by alanine significantly de...

متن کامل

Mechanism of μ-Conotoxin PIIIA Binding to the Voltage-Gated Na+ Channel NaV1.4

Several subtypes of voltage-gated Na+ (NaV) channels are important targets for pain management. μ-Conotoxins isolated from venoms of cone snails are potent and specific blockers of different NaV channel isoforms. The inhibitory effect of μ-conotoxins on NaV channels has been examined extensively, but the mechanism of toxin specificity has not been understood in detail. Here the known structure ...

متن کامل

Experimental and computational evidence for an essential role of NaV1.6 in spike initiation at stretch-sensitive colorectal afferent endings.

Stretch-sensitive afferents comprise ∼33% of the pelvic nerve innervation of mouse colorectum, which are activated by colorectal distension and encode visceral nociception. Stretch-sensitive colorectal afferent endings respond tonically to stepped or ramped colorectal stretch, whereas dissociated colorectal dorsal root ganglion neurons generally fail to spike repetitively upon stepped current s...

متن کامل

Folding similarity of the outer pore region in prokaryotic and eukaryotic sodium channels revealed by docking of conotoxins GIIIA, PIIIA, and KIIIA in a NavAb-based model of Nav1.4

Voltage-gated sodium channels are targets for many drugs and toxins. However, the rational design of medically relevant channel modulators is hampered by the lack of x-ray structures of eukaryotic channels. Here, we used a homology model based on the x-ray structure of the NavAb prokaryotic sodium channel together with published experimental data to analyze interactions of the μ-conotoxins GIII...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 20 1  شماره 

صفحات  -

تاریخ انتشار 2000